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Chapter 1 Fundamental of Physics of System Biology

1.1 Overview

Two basic concepts of molecular biology have to be understood before endeavoring to engineer
biological systems, which are how information flows in biological systems and how this information
flow is controlled/regulated. With an understanding of these concepts we shall be able to apply
engineering principles to the design and building of new biological systems.

Central Dogma of Molecular Biology
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Genome is the information store, but the majority of functions within the cell are performed by
proteins. The question thus arises: how information leads to function. The flow of information within
biological systems forms what is known as the central dogma. When required, the message within
DNA is transcribed into an intermediate molecule called messenger RNA (mRNA), before being
translated into the final product, protein. The fundamental unit of hereditary information stored in the
genome is known as a gene. A gene should also be considered to include the regulatory elements
required to control it. The basic structure of a gene is depicted in the following:
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When a gene is turned on, the protein (or other functional molecule) is produced (or called being
expressed); when it is turned off it is not produced.

The availability of a fully sequenced human genome calls for more accurate understanding of
the fundamental properties of complex systems residing inside the cell and elucidating the origins of
complex human diseases.

The complex biological systems residing inside the cell
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Cellular processes (such as signaling, gene regulation, and protein-protein interactions) are
intertwined on many levels

Human genes and the proteins they encode in a biological system do not work in isolation but
are connected at various levels, giving rise to a plethora of networks.
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1.2 High-throughput Technologies

High-throughput technologies have recently led to a new perspective in biology, where the cell
is interpreted as a large and complex system composed of highly integrated subsystems. The
high-throughput methodologies, paired with computational approaches, can be used to infer networks
of interactions and causal relationships within the cell.

The Omics technologies are the driving force behind the System Biology

With the development of the high-throughput technologies to identify and quantify (DNA,
MRNA, protein, and metabolite at the molecular level, researchers are in a position to gather
comprehensive genome-wide data of a given biological system. In addition, new techniques to
manipulate cells in a directed manner allow researchers to perturb biological systems under
controlled conditions (e.g., single genes can be deactivated and the global response of the modified
cell can be observed at the molecular level). Such comprehensive and accurate experimental data are
critical for developing and testing models of biological processes.
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Dynamic/kinetic information

The current challenge is to integrate the different information yielded from a variety of
high-throughput methodologies to understand dynamical properties of cellular systems.

1.2.1 Transcriptomic Data: studies the active genes in a given cell at a given time

A. Gene Expression (GE) Profile
Analysis of gene expression (GE) can be done by several different methods including (reverse
transcriptome PCR) RT-PCR, RNase protection assays, microarrays, as well as northern blotting (see
the knowledge base 1 and 2). Microarrays are commonly used, which yield consistent data with that
obtained with northern blots, and can visualize thousands of genes at a time.

High Throughput Measures of Gene Expression can be used to
» Measure gene expression: quasi-estimate of the protein level and cell state
» High throughput: measure mRNA level of all active genes in the genome
»  Checking the physiological status in many different situations

Typical Steps for the Use of Microarrays

»  Grow cells at certain condition, collect MRNA population, and label them;

»  Microarray has high density sequence specific probes with known location for each gene/RNA,;

»  Sample hybridized to microarray probes by DNA base pairing (A-T, G-C), wash non-specific
binding;

» Measure sample mMRNA value by checking labeled signals at each probe location.



There are two different types of microarrays: 1. Spotted cDNA microarrays
ii. Oligonucleotide arrays

Spotted cDNA Arrays
> Developed by Pat Brown Lab, Stanford University;
> Robotic spotting of cDNA (mRNA converted back to
DNA without introns) ; typically containing several
thousands of probes per array;
One long probe per gene
»  Competing hybridization: Control
Treatment

»  Detection: Green: high control

Red: high treatment

Yellow: equally high Gone 1

Black: equally low § . ra O
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Why Competing Hybridization? DNA concentration in
probes is not the same because probes may not be spotted

evenly.

Oligonucleotide Arrays
»  GeneChip® provided by by Affymetrix; — (RS g

| Genet Gene2 | | Ganed
»  Parallel synthesis of oligonucleotide probes (25-mer) on
a slide using photolithographic methods; typically S Laballod cDNA
containing millions of probes per microarray; [ ] |
»>  Multiple probes per gene; -
»  One-color arrays; PSS

Labslied ANA ™

Laballad cRNA



Typical Steps for the Use of Oligonucleotide Arrays
Labeled Samples Hybridize to DNA Probes on GeneChip

Hybridized DNA |~

B. Next Generation Sequencing Technologies There are several next generation sequencing
technologies under development in order to bring down the sequencing cost to $1000 USD.
We only introduce the principles of the most representative ones to give a brief overview of
the field.

454 Life Sciences: Small fragments of DNA are mixed with small beads. The mixture is sufficiently
dilute so that each bead bind a single DNA molecule. Next, the DNA-containing beads are dispersed
on a silicon plate containing 400,000 regularly spaced wells. Each well captures a single bead. PCR
is performed directly on the bead-tethered DNA to amplify each molecule. This is then used as a
substrate for a second round of PCR that includes bioluminescent proteins as well as DNA
polymerase.

The second round of DNA synthesis is performed separately with dATP, dGTP, dTTP, or dCTP,
with a washing cycle between each pulse. The addition of one of the four deoxynucleotide
triphosphates (ANTPs) (in the case of dATP we add dATPaS which is not a substrate for a luciferase)
initiates the second step. DNA polymerase incorporates the correct, complementary dNTPs onto the
template. This incorporation releases pyrophosphate (PPi) stoichiometrically. ATP sulfurylase
quantitatively converts PPi to ATP in the presence of adenosine 5’ phosphosulfate. This ATP acts as
fuel to the luciferase-mediated conversion of luciferin to oxyluciferin that generates visible light in



amounts that are proportional to the amount of ATP. The light pulse represent the incorporation of a
particular nucleotide. Unincorporated nucleotides and ATP are degraded by the apyrase, and the
reaction can restart with another nucleotide. Thus in this way 400,000 DNAs are simultaneously
sequenced (200-400 nucleotides per segment) to generate 100 Mb sequence per run.
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3-AGATACTA SAGATCCAG...-5 -[bead]

PPi + APS

2. dGTP, substrate, apyrase wash ATP + luciferin
3. dCTP, substrate, apyrase wash }
4, dTTP, substrate, apyrase wash  oxyluciferin + LIGHT

( 1. dATPaS, substrate, apyrase wash

Figure Caption: (a) Clonally amplified 28-pum beads generated by emulsion PCR serve as sequencing features and are
randomly deposited to a microfabricated array of picoliter-scale wells.

(b) With pyrosequencing, each cycle consists of the introduction of a single nucleotide species, followed by addition of
substrate (luciferin, adenosine 5’-phosphosulphate dATPaS) to drive light production at wells where polymerase-driven

incorporation of that nucleotide took place. This is followed by an apyrase wash to remove unincorporated nucleotide.

HeliScope platform: Single nucleic acid molecules are sequenced directly, that is, there is no clonal
amplification step required. Poly-A—tailed template molecules are captured by hybridization to
surface-tethered poly-T oligomers to yield a disordered array of primed single-molecule sequencing
templates. Templates are labeled with Cy3, such that imaging can identify the subset of array
coordinates where a sequencing read is expected.

Each cycle consists of the polymerase-driven incorporation of a single species of fluorescently
labeled nucleotide at a subset of templates, followed by fluorescence imaging of the full array and
chemical cleavage of the label.

Cy3
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2. Cy5-dGTP, image, chemically cleave label
3. Cy5-dCTP, image, chemically cleave label

( 1. Cy5-dATP, image, chemically cleave label
4. Cy5-dTTP, image, chemically cleave label

SOLID Platform (Sequencing by Oligonucleotide Ligation and Detection,
http://en.wikipedia.org/wiki/2_Base Encoding): Clonally amplified 1-um beads are used to generate
a disordered, dense array of sequencing features. Sequencing is performed with a ligase, rather than a
polymerase. Each sequencing cycle introduces a partially degenerate population of fluorescently
labeled octamers (8 bases in length). The population is structured such that the label correlates with



http://en.wikipedia.org/wiki/2_Base_Encoding

the identity of the central 2 bp in the octamer (the correlation with 2 bp, rather than 1 bp, is the basis
of two-base encoding). These 8-base long probes have a free hydroxyl group at the 3’ end, a
fluorescent dye at the 5’ end and a cleavage site between the fifth and sixth nucleotide. The first three
bases nnn (starting at the 3' end) are complementary to the nucleotides being sequenced. Bases 4
through 5 are degenerate (XX) and able to pair with any nucleotides on the template sequence. Bases
6-8 (zzz) are also degenerate but are cleaved off, along with the fluorescent dye, as the reaction
continues. In this manner positions n+1 and n+2 are correctly base-paired followed by n+6 and n+7
being correctly paired, etc. The composition of bases n+3,n+4 and n+5 remains undetermined until
further rounds of the sequencing reaction.

After ligation and imaging in four channels, the labeled portion of the octamer is cleaved via a
modified linkage between bases 5 and 6, leaving a free 5’ end for another cycle of ligation. Several
such cycles will iteratively interrogate an evenly spaced, discontiguous set of bases. The system is
then reset (by denaturation of the extended primer), and the process is repeated with a different offset
(e.g., a primer set back from the original position by one or several bases) such that a different set of
discontiguous bases is interrogated on the next round of serial ligations. The sequencing step is
basically composed of five rounds and each round consists of about 5-7 cycles. A complete reaction
of five rounds allows the sequencing of about 25 base pairs of the template.

3-GARCATACGA ACCTA...-5" -[bead]
— GGAT...-3

FLx
5-zz2X¥nnn-3'
1. Ligate labeled, structured octamer population

2. Image, cleave, repeat x5
3. Reset and start again with new offset

RNAseq: a revolutionary tool for transcriptomics

The recent development of next-generation massively parallel sequencing (MPS) technologies
by companies such as Roche (454 GS FLX), Illumina (Genome Analyzer I1), and ABI (AB SOLID)
has completely transformed the way in which quantitative transcriptomics can be done. These new
technologies have reduced both the cost per reaction and time required by orders of magnitude,
making the use of sequencing a cost-effective option for many experimental approaches. One such
method that has recently been developed uses MPS technology to directly survey the RNA content of
cells, without requiring any of the traditional cloning. This approach, called “RNA-seq”, can
generate quantitative expression scores that are comparable to microarrays, with the added benefit
that the entire transcriptome is surveyed without the requirement of a priori knowledge of transcribed
regions. The important advantage of this technique is that not only can quantitative expression
measures be made, but transcript structures including alternatively spliced transcript isoforms, can
also be identified.

RNA-Seq: Alternative to Microarrays with Unique Features
> Yielding general expression profiling



Applicable for novel genes

Providing information about alternative splicing
Can detect gene fusion

Can be used on any sequenced genome

Better dynamic range

Cleaner and more informative data

But data analysis is challenging
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Figure Caption: (a) Long RNAs are first converted into a library of cDNA fragments through either RNA fragmentation



or DNA fragmentation. Fragmentation of oligo-dT primed cDNA (blue line) is more biased towards the 3’ end of the
transcript. RNA fragmentation (red line) provides more even coverage along the gene body, but is relatively depleted for
both the 5” and 3’ ends.

(b) Sequencing adaptors (blue) are subsequently added to each cDNA fragment and a short sequence is obtained from
each cDNA using high-throughput sequencing technology. The resulting sequence reads are aligned with the reference
genome or transcriptome, and classified as three types: exonic reads, junction reads and poly(A) end-reads. These three
types are used to generate a base-resolution expression profile for each gene, as illustrated at the bottom (a yeast ORF

with one intron is shown).

1.2.2 Proteomic Studies: discover which proteins are present and in what amounts
Challenges in Proteomics
» Too many proteins:

=> 20 building blocks instead of 4;

=> 65% genes have splice and translation isoforms;

=>» Many different post-translation modifications (PTM);

=> # Proteins > # mMRNA > # genes
»  Difficult to capture and study activities

=>» Protein state changes are often faster than transcription regulation;

=> Need to be in functionally folded state, with right PTM;

=>» Many are difficult to purify and study in vitro, e.g. membrane proteins
»  Big dynamic range

= Yeast 10°, human 10°, current method 10%-10*

=> No PCR for amplifying proteins, hard to profile low-abundance proteins
»  Why bother then?

=> Aot of practical applications

=>» Most drugs act on proteins not DNA/RNA

=> Enzyme / TFs are the master regulators

= DNA ~ “the novel”, mRNA ~ “the script”, proteins ~ “the actors”



cell adhesion (577, 1.9%)
miscellancous (1318, 4.3%) chaperone (159, 0.5%)
cytoskeletal structural protein (876, 2.8%)
extracellular matrix (437, 1.4%)
immunoglobulin (264, 0.9%)
ion channel (406, 1.3%)
motor (376, 1.2%)
structural protein of muscle (296, 1.0%)

viral protein (100, 0.3%)
transfer/carrier protein (203, 0.7%)

transcription factor (1850, 6.0%)

protooncogene (902, 2.9%)

select calcium binding protein (34, 0.1%)
intracellular transporter (350, 1.1%)
transporter (533, 1.7%)

nucleic acid enzyme (2308, 7.53%)

signaling molecule (376, 1.2%)

receptor (1543, 5.0%)

kinase (868, 2.8%)
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select regulatory molecule (988, 3.2%)

transferase (610, 2.0%) GO categories

synthase and synthetase (313, 1.0%)
axidoreductase (656, 2.1%)

Iyase (117, 0.4%)
ligase (56, 0.2%)

isomerase (163, 0.5%)

hydrolase (1227, 4.08) molecular function unknown (12809, 41.7%)

Panther categories

High-throughput methods for measuring protein-protein interactions

High-throughput methods for detecting PPIs at large-scale that have been introduced include
yeast two-hybrid (Y2H) screening, affinity purification—-mass spectrometry (AP-MS), and protein
microarrays.

Mass Spectrometry: Identify proteins by comparing observed MS spectrum to computed spectrums
from genome

(a) Protein Proteclytic peptides Mass spectrum
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Mass spectroscopies do not resolve too long proteins; so we need to cut protein to shorter peptides
(~15 aa) by using trypsin, which cleaves at Arginine (R) and Lysine (K) but not before Proline (P).

Apparatus and Working Principle



Mass Spectrometer (m/z)

Time

Tandem high performance liquid chromatography-mass spectrometry (HPLC-MS) is an
analytical chemistry technique that combines the physical separation capabilities of HPLC with the
mass analysis capabilities of mass spectrometry. HPLC-MS is a powerful technique used for many
applications which has very high sensitivity and specificity. Generally its application is oriented
towards the specific detection and potential identification of chemicals in the presence of other
chemicals (in a complex mixture). HPLC separates complex protein mixtures into less complex sub-
fractions based on ionic interactions with a charged column (ion exchange chromatography) and
hydrophobic interactions with the column (reverse phase chromatography). An electrospray is used
that employs high voltage to disperse a liquid through a fine glass or metal capillary resulting in a
highly charged aerosol. Mass spectrometry (MS) is an analytical technique for the determination of
the elemental composition of a sample molecule. It is also used for elucidating the chemical
structures of molecules, such as peptides and other chemical compounds. The MS principle consists
of ionizing chemical compounds to generate charged molecules or molecule fragments and
measurement of their mass-to-charge ratios.

In a typical MS procedure:
1) Asample is loaded onto the MS instrument, and undergoes vaporization.
2) The components of the sample are ionized to form charged particles.
3) The positive ions are then accelerated by an electric field.
4) Computation of the mass-to-charge ratio (m/z) of the particles based on the details of motion of
the ions as they transit through electromagnetic fields.
5) Detection of the ions, which in step 4 were sorted according to m/z.

Peptide Charge and Mass

(M+2H)2*
472.7700

473.2710

Relative Abundance
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20 473.7723
10 472.3233 .
471.8120 474.2738
472 473 474

m/z

From the charge z=2 andm = M + 2H ", the measured peak withm/z = 472.7700 = (M +2H")/2



and H™ =1.0073, the peptide mass is then estimated to be M =943.5254.

Two large-scale MS experiments
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Yeast Two-Hybrid (Y2H)

Two-hybrid screening (also known as yeast two-hybrid system or Y2H) is a molecular biology
technique used to discover protein-protein interactions. The premise behind the test is the activation
of downstream reporter gene(s) by the binding of a transcription factor onto an upstream activating

sequence (UAS).
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Reporter gene

For two-hybrid screening, the transcription factor is split into two separate fragments, called the
binding domain (BD) and activating domain (AD). The BD is the domain responsible for binding to
the UAS and the AD is the domain responsible for the activation of transcription. The most common



screening approach is the yeast two-hybrid assay. This system often utilizes a genetically engineered
strain of yeast in which the biosynthesis of certain nutrients is lacking. When grown on media that
lack these nutrients, the yeast fail to survive. This mutant yeast strain can be made to incorporate
foreign DNA in the form of plasmids. In yeast two-hybrid screening, separate bait and prey plasmids
are simultaneously introduced into the mutant yeast strain. Plasmids are engineered to produce a
protein product in which the DNA-binding domain (BD) fragment is fused onto a protein while
another plasmid is engineered to produce a protein product in which the activation domain (AD)
fragment is fused onto another protein. The protein fused to the BD may be referred to as the bait
protein, and is typically a known protein the investigator is using to identify new binding partners.
The protein fused to the AD may be referred to as the prey protein and can be either a single known
protein or a library of known or unknown proteins.

A library may consist of a collection of protein-encoding sequences that represent all the
proteins expressed in a particular organism or tissue. If the bait and prey proteins interact, then the
AD and BD of the transcription factor are indirectly connected, bringing the AD in proximity to the
transcription start site and transcription of reporter gene(s) can occur. If the two proteins do not
interact, there is no transcription of the reporter gene. In this way, a successful interaction between
the fused proteins is linked to a change in the cell phenotype.

Prey library
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Antibody Microarrays

An antibody microarray is a specific form of protein microarrays, a collection of capture
antibodies are spotted and fixed on a solid surface, such as glass, plastic and silicon chip for the
purpose of detecting antigens. Antibody microarray is often used for detecting protein expressions
from cell lysates in general research and special biomarkers from serum or urine for diagnostic
applications. The covalent labeling of all proteins in a complex mixture provides a means for
detecting bound proteins after incubation on an antibody microarray. If proteins are labeled with a
tag, such as biotin, the signal from bound proteins can be amplified.

Microarmay with Array incubated Native antigens bound
500 pairs of unique with native to antibodies on array
monoclonal antibodies protein extracts

L {cells, tissues,
*‘F"&% #

B Y QI#QW o body fluids, etc.) \1}% ’
Y qikfi‘oe'& i ﬂﬁf’

Limitations: Not so widely used, Need for reliable antibodies, usually relatively few proteins
(100s) are measured, requires a lot of protein extract (no PCR amplification!)

Could also consider global proteomics using mass spectrometry but this still requires
optimization to be broadly useful and is very expensive

1.2.3 Metabolome: examine which metabolic processes occur under different conditions

Biological systems, which exploit suitable energy sources, can achieve spontaneous
self-organization (order) and allow them to reach high levels of diversity and complexity by means
of adaptive processes. From the thermodynamic point of view, the actual decrease of entropy of the
system, relative to its organization, is balanced by the entropy increase of the surrounding
environment.

Metabolism is a set of biochemical reactions by which the cells can extract energy and materials
from its environment, and uses them to produce different metabolites necessary for its survival and
function. Metabolomics is the scientific study of chemical processes involving metabolites. The
metabolome represents the collection of all metabolites in a biological cell, tissue, organ or organism,
which are the end products of cellular processes. Thus, metabolic profiling can give an instantaneous
snapshot of the physiology of that cell.



Comparison of High Throughput Analytical Platforms

Detection Advantages Disadvantages
limit
NMR >10%M Min sample prep  Sensitivity
Structural info Spectral interpretation
Mass Spectrometry > 102¥M Sensitivity Indirect structural info
Molecular Sample prep
diversity
Capillary =105 M Sensitivity Indirect structural info
electrophoresis Molecular diversity
Sample prep

1.3 Biological Networks

Human genes and the proteins they encode in a biological system do not work in isolation but
are connected at various levels, giving rise to a plethora of networks. Depending on the kind of
biological network, the edges and nodes of the graph have different meaning.

1.3.1 Transcriptional Regulatory Networks (protein-DNA interactions)

The regulation of gene expression ensures the correct expression of specific gene at the right
time and at the right location. The regulation of gene expression gives a cell control over its structure
and function. In eukaryotes, the transcription of each gene is regulated by transcription factors (TFs).
Transcriptional regulation is the process by which genes regulate the transcription of other genes. A
gene X directly regulates a gene Y, if the protein that is encoded by X is a transcriptional factor for
gene'.

In a transcriptional regulation network (TRN), nodes represent genes and directed edges
between them represent interactions through which the products of one gene affect those of another.
Thus, the network structure is an abstraction of the system’s biochemical dynamics that is
responsible for regulating the expression of genes in the cell.
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The mapping between environmental signals {S;}, transcription factors {X;} inside the cell, and the genes that they

regulate. The transcription factors, when active, bind DNA to change the transcription rate of specific target genes.

The genome of the unicellular yeast encodes 200 predicted TFs, which is 3% of all
protein-coding genes; the relatively simple metazoan nematode C. elegans contains 934 predicted
TFs (5% of all protein-coding genes); humans may devote up to 10% of their coding potential to



regulatory TFs. TRN identification today is mainly accomplished with the combination of microarray
techniques with chromatin immune precipitation (ChlIP, see the knowledge base file).

1.3.2 Protein-Protein Interaction (PPI) Networks

A vast number of biological processes in an organism are dependent on
precise physical interactions among many individual proteins. PPI networks
reflect this interconnected nature of biological processes. In PPI networks,
nodes represent proteins and undirected edges between them represent physical
interactions.
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A PPI network showing the Epstein-Barr Virus (EBV) pathogenesis

1.3.3 Metabolic Networks (MN)

A metabolic network is an abstraction to represent cellular metabolism. Feist et al. proposed a
general four-step process for a metabolic network reconstruction. The first step consists of generating
a network draft from the genome annotation of the organism of interest. The draft network should be
manually curated in the second step to remove incorrectly included reactions, add missing reactions
for filling gaps, or assign enzymes localization to different cellular compartments. In the third step,
the curated network should be translated into a mathematical model that facilitates the analysis of the
network and its validation. The final step of metabolic network reconstruction process is to deploy
the metabolic network model to produce new insights about the organism’s metabolism.

For graph-theoretic analysis, metabolic networks are usually represented by a bipartite graph
with two sets of nodes: one corresponding to metabolites and the other corresponding to reactions (or



enzymes). Edges connect reactions (or enzymes) with their participating metabolites.

Reaction 1: A+B——C

Reaction2: C—=D
Reaction3: D+F—5 3G +H

1.3.4 Signaling Networks (SN)

Signaling networks are used by cells to constantly monitor a wide array of external and internal
stimuli. External stimuli can include nutrient levels, growth factors, hormones, and so on; whereas
DNA damage, protein misfolding, and so on, can be considered as internal stimuli.108 Both stimuli
are sensed by receptors and the information is transmitted through a series of biochemical reactions.
Ultimately, appropriate decisions are taken.

In a signaling network, nodes represent proteins and protein complexes. However, nucleotides,
lipids, and chemical compounds involved in the information flow process can also be included. A
signaling network may contain a wide variety of relationships with different edges to represent
phosphorylation/dephosphorylation, activation/inhibition, binding, association, ubiquitination, and so
on. Some of these relationships are directional, such as phosphorylation, activation, or ubiquitination,
where a protein acts on another protein to pass the information. However, in relations such as binding,
and association, protein complexes are formed and no directionality of information flow can be
ascertained.

1.4 Mathematical Modeling for Understanding Complex Biological Processes

It is important to note that biological networks usually include all known interactions in a
cellular system. However, only a subset of these interactions may be active in a particular cellular
and environmental context at a particular time. To discover the activated regions of the networks and
their biological implications, networks have to be integrated with experimental data that represent the
physiological state of the system in that particular condition. Then an iterative process is met with
genome-scale data constraining and driving the development of models. The hypotheses used for the
model can be tested experimentally to allow further refinement of the models.

Different mathematical frameworks have been developed for modeling the behavior of different
types of biological systems. Two examples are described below:

Modeling Metabolic Processes

A metabolic network can be represented as a stoichiometric model, which is a mathematical
representation of the mass conservation law (or mass balance) applied to the metabolites of the
network. The mass balance for all metabolites in a network can be expressed in matrix notation by
mapping the information contained in the network into the stoichiometric matrix (S). The
stoichiometric matrix is of dimensions n x m, where n is the number of metabolites and m is the



number of reactions in the network.

Using the stoichiometric matrix, the mass balance for the metabolites can be written as

m
%:S -v=;sijv,. ,

where c(n x1) is the vector of metabolite concentrations and v(mx1)is the vector of reaction rates..
The model can be solved for steady state conditions: S -v =0, which is often underdetermined
because the number of reactions is typically greater than the number of metabolites in a metabolic
network. This problem is addressed in constraint-based methods that analyze metabolic networks by
characterizing the vector of reactions rates (also called flux distribution) that satisfyS-v=0. The
method (called Flux Balance Analysis FBA) estimates flux distributions that optimize a biological
objective while satisfying S - v = 0 and additional constraints regarding the reversibility and carrying
capacity of the reactions. Commonly used objectives that have proven to produce meaningful flux
distributions include the maximization (or minimization) of the biomass production rate, ATP
production, or the synthesis of a particular metabolite.

Modeling Gene regulatory Networks

Signaling pathways serve as the cell’s central control machinery, which tightly regulates the
cell’s response to external and internal stimuli. Many signaling pathways are triggered by the binding
of extracellular biomolecules (e.g., hormones or growth factors such as TGF, IGF) to a docking
molecule (i.e., receptor, such as EGFR, IGFR) embedded in the membrane surrounding the cell. If a
signaling molecule binds to the extracellular region of the receptor, the receptor’s three-dimensional
structure may change that can trigger cascades of biochemical reactions within the cytoplasm. These
cascades often involve specialized signaling molecules such as enzymes known as kinases (such as
Raf, PI3K, Akt, MEK, ERK), which transfer phosphate groups from one molecule (the donor) to a
specific target molecule (the substrate). The addition of the phosphate group changes the substrate
protein’s biochemical behavior so that it, in turn, can modify additional signaling molecules in the
signaling cascade. Ultimately, this chain reaction results in the activation of proteins called
transcription factors that bind in the cell nucleus to DNA, triggering expression of distinct sets of
target genes.
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Genetic and biochemical experiments in the 1960s demonstrated the presence of regulatory
sequences in the proximity of genes and the existence of proteins that are able to bind to those
elements and to control the activity of genes by either activation or repression of transcription. These
regulatory proteins are themselves encoded by genes (see the following Figure for the representation
of a fictional Gene Regulatory Network (GRN)). This forms a complex regulatory network with
positive and negative feedback loops.

GENE 1 GENE 2 GENE 3 GENE 4

DNA

mm ranscription factor binding site
in promoter region

coding DNA
. transcription factor

Representation of a simple, fictional transcription factor network. All genes shown encode transcription

factors that control the activity of genes encoding transcription factors.

The dynamics of the resulting GRNs can be described with systems of differential equations

d

d_)ilz FL OG0 X0 X5 Ky Ky K
dx

d_tzz fz(Xl,Xz,...,Xn; klvkzv""kn
dx,

el (X Xy, X5 KKy K

These equations are typically highly nonlinear. Linear differential equations can be solved
analytically; nonlinear ones cannot and a different perspective on nonlinear system dynamics is
needed.



Let us consider a qualitative linear dynamics

Ky X ky

r @ >
constant first order
production degradation

which can be properly described by

dx
E=kl—k2X.

The equation has a solution x(t) = % +(x(0) —%) exp(—k,t) . For a given pair of parameter values (k:
2 2

and ky)), there is a unique stable steady state in the state space, which is globally attracting. Any other
pair of parameter values has the same qualitative features and the dynamics only differs in a
quantitative way.

PARAMETER SPACE

STATE SPACE

X L ]

0 >« 0 k,

. . o dx
Now let us introduce a nonlinearity into the systema =k X(1—x) —k,x . The parameter space breaks

up into two regions: in the region ki<k, each pair of parameter values gives a unique, stable steady
state at x = 0, which is globally attracting; in the region k; >k, each pair of parameter values has two
steady states, one unstable at x = 0 and one stable at x = 1 — ko/k; to which all positive initial
conditions are attracted. A bifurcation takes places at k; = ko

STATE SPACE PARAMETER SPACE
X 4 4
. . k1 < ko
0 4
ky .
k1 > ko
X .
L - -
0 > 4 0

For a general system of nonlinear differential equations, parameter space can break up into
multiple regions. Dynamical features shift abruptly through bifurcations as the boundary between
two parameter regions is crossed. In each of these regions the state-space dynamics has the same
qualitative features (the # of steady states and their stabilities); different regions have different
qualitative dynamics.

To investigate the dynamics in the state space, the first thing to calculate is the steady states —
they are the skeleton around which the dynamics takes place. As an example, let us consider a gene
transcription system with a positive feedback on itself. The schematic is shown as follows:
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The system dynamics can be described by

daq A\
= Arp — axr
dt 2 !
dxo axq
= — bro
dt k=41

Here we introduce the method of nullclines for the 2D systems. The x; nullcline is the locus of

. ... d a - L . e
points satlsfylngd—);1 =0->Xx,= le. Similarly, the x; nullcline is the locus of points satisfying
dx, a X . . .
—=0->X,=— " . The steady states are the intersections of the nullclines.

+ X
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o8 : aafp A
o8 ,l‘_ > 2 oaf f\ < L
o ~ ab 1 ab
53 I
5 2 5 s k.4 0 2 3 35
X1 X3

The dynamics of the system can then be revealed with the trajectories in the state space. The
following figure presents the trajectories starting from different points (the black spots) in the
state space. The parameters used are 1 =0.08sec™; a=0.02sec™;b=0.1sec™; & =0.1uM sec™
and k =5uM for the left figure and k =2uM for the right figure. The system is found to
dynamically approach to the nearby stable state (the pink color spot) no matter what it locates
initially in the state space. The trajectories are attracted to and then hug the x, nullcline because
a and b are 10-fold larger than A and a. This time scale separation (i.e., x, is a fast variable and
X1 the slow variable) allows us to eliminate x, after the initial transient and reduces the system
to a 1-dimensional dynamics (the Tykhonoff's Theorem).
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The 1-D dynamical system becomes dx/dt = f (x) . The procedure to discover the 1D stability is:

1)

2)

3)
4)
5)

fi(x)

i
& o

dx

.IJ'
df -

dx

find a steady state X = s, so that —| = f(x,)=0;

X=Xgt

calculate the derivative of f at the steady state ar(x)

X=Xgt

if the derivative is negative, then X is stable;
if the derivative is positive, then X is unstable;
if the derivative is zero, then nothing can be said.

But notice that derivatives give only local information, we cannot tell the size of the region from
the deriviative. The stability region may be vanishingly small.

For n-dimensional systems with dx/dt = f (x) , the procedure can be modified as follows:

1) find a steady state X = X , SO that ax

X=Xgt

= £(x,) =0;

2) calculate the Jocobian matrix of f at the steady state A = (Df )|X:X ;

3)
4)

if all the eigenvalues of A have negative real part, then X is stable;
if none of the eigenvalues of A have zero real part and at least one of them has a positive
real part, then X is unstable;



5) if one of the eigenvalues of A has zero real part, then nothing can be said.

There exists a homeomorphic mapping between the nonlinear state space and the linear state
space that preserves the dynamical trajectories (qualitative similarity). So it is useful to linearize
the nonlinear dynamic system, find the steady states of the corresponding linear system, and
then study the dynamics nearby the steady states

dx linearise around f.’y
= = f(@) , = [(DP)pmay] ¥

T =Ty

A Case Study of Auto-Regulation (AR) of a Single Gene

orotein Adation
X mMRNA translation
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mMRNA

negative
feedback X >

transcription
degradation

protein coding region

dd_)f[l = d_m =translation — deg radation = r(p) —am

LY = a = transcription — deg radation = bm —cp
dt dt
To find the nullcline for mRNA, set the equation dm/dt to 0: m=r(p)/a. Do the same for
the equation fordp/dt: m=cp/b.
A vector field can be plotted in Mathematica using the StreamPlot command; and overlay
plots using the Show command. Make a plot of the nullclines for m and p, overlaid with a vector
field plot. Usea=0.6,b=0.1,c=0.1.

20

with a,c>0.
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The red curve is the protein nullcline; the green curve is the mRNA nulicline. The three
intersections between the two nullclines represent the fixed points. The first fixed point (small p,
small m) is a stable steady state because it attracts neighboring trajectories; the last fixed point



(large p, large m) is also a stable steady state. The intermediate steady state is unstable because
trajectories tend to deflect away from it towards one of the two other steady states. The
trajectories rapidly converged to the green curve (mMRNA nullcline) and then traveled along the
green curve to reach one of the two stable steady states (intersection with the red curve). This
means that for these parameters, the mRNA rapidly reached steady state and stopped changing,
followed by a slower change in the protein concentration.

Make a plot of the nullclines and the vector field again but using a = 0.6, b =10, ¢ = 10.
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In this plot, we see the reverse phenomenon: the trajectories rapidly converge to the red curve
(protein nullcline) and then travel more slowly to the steady states. This indicates that protein
equilibrates more rapidly than mRNA for these parameters.

Assume that transcription and mRNA degradation are fast processes relative to protein
translation and degradation. With this assumption, we can make a timescale separation and
reduce the two-variable system to a one-variable system. We set the equation for dm/dt =0
and solve for m: m=r(p)/a. Substitute your expression intodp/dt =bm—cp,
dp/dt=bm—cp =br(p)/a—cp=ar(p)-cp. Here a represents a scaling factor that determines
how the protein production rate is proportional to the transcription rate, r(p). A useful way to depict a
one-dimensional system is to separate it into two parts: synthesis and degradation. Suppose that we
have an equation of the form dx/dt = S(x) — D(x) , where S is a synthesis term and D is a
degradation term. The criterion for a fixed point dx/dt =0 then becomes S(x) = D(x). If we draw
S(x) and D(x) on the same plot, the fixed points are just the points at which S(x) and D(x) intersect.
This allows us to easily see where the fixed points are, and how they are influenced by changes in the
shape of the synthesis and degradation curves, giving us a powerful way in which to determine the
qualitative properties of the system over a range of parameters.

A Case Study of a Bistable Network Motif

Complex dynamics of molecular signaling networks arise collectively from interactions among
individual components. Cellular functions, such as proliferation, differentiation, homeostasis,
mobility, metabolism and rhythmic behaviors, require proper integration of the dynamical properties
of networks. Here we will use bistability as an example to illustrate the principle that can be invoked
to produce the desired dynamics with a properly structured network motif.



Many cellular responses, including proliferation, differentiation, lineage specification and
apoptosis, are all-or-none, in which cells choose between two discrete outcomes. Once cells commit
to one fate over the other, the state transition is usually irreversible under physiological conditions.
To deepen our insight into the behavior, let us consider a simple two-variable system in which genes
X and Y activate each other transcriptionally, with linear degradation of each gene product. Y
activates X in a simple Michaelis—Menten fashion, whereas X activates Y with the Hill function:

AN

X Y

"

X Y

dt YK, +Y kX
dy X"
it KX
The possible steady states of this system appear as intersection points of the X and Y nullclines
(i.e., the curves deduced from dX/dt=0 and dY/dt=0): X = L ,and Y = ﬁx—n For
k, K, +Y k, K,"+X"

the system to be bistable, the two nullclines must intersect each other three times, corresponding to
two stable steady states and one unstable steady state in between. Given that the X nullcline bends
upward or is at best a straight line, the Y nullicline has to be sufficiently ‘twisted’ in a certain way in
order to cross the X nullcline back and forth multiple times. This behavior can be readily achieved
when the Y nulicline is sigmoid. In fact, a certain degree of ultrasensitivity (n>1) in either of the two
arms of a positive feedback loop is essential for bistability to arise.




