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Chapter 1 Fundamental of Physics of System Biology 
 

1.1 Overview 
Two basic concepts of molecular biology have to be understood before endeavoring to engineer 

biological systems, which are how information flows in biological systems and how this information 
flow is controlled/regulated. With an understanding of these concepts we shall be able to apply 
engineering principles to the design and building of new biological systems. 

 
Genome is the information store, but the majority of functions within the cell are performed by 

proteins. The question thus arises: how information leads to function. The flow of information within 
biological systems forms what is known as the central dogma. When required, the message within 
DNA is transcribed into an intermediate molecule called messenger RNA (mRNA), before being 
translated into the final product, protein. The fundamental unit of hereditary information stored in the 
genome is known as a gene. A gene should also be considered to include the regulatory elements 
required to control it. The basic structure of a gene is depicted in the following: 

 
When a gene is turned on, the protein (or other functional molecule) is produced (or called being 
expressed); when it is turned off it is not produced. 
 

The availability of a fully sequenced human genome calls for more accurate understanding of 
the fundamental properties of complex systems residing inside the cell and elucidating the origins of 
complex human diseases. 

 
The complex biological systems residing inside the cell 

 



 
Cellular processes (such as signaling, gene regulation, and protein-protein interactions) are 
intertwined on many levels 

Human genes and the proteins they encode in a biological system do not work in isolation but 
are connected at various levels, giving rise to a plethora of networks. 

 
 
1.2 High-throughput Technologies 

High-throughput technologies have recently led to a new perspective in biology, where the cell 
is interpreted as a large and complex system composed of highly integrated subsystems. The 
high-throughput methodologies, paired with computational approaches, can be used to infer networks 
of interactions and causal relationships within the cell. 

 
The Omics technologies are the driving force behind the System Biology 

With the development of the high-throughput technologies to identify and quantify (DNA, 
mRNA, protein, and metabolite at the molecular level, researchers are in a position to gather 
comprehensive genome-wide data of a given biological system. In addition, new techniques to 
manipulate cells in a directed manner allow researchers to perturb biological systems under 
controlled conditions (e.g., single genes can be deactivated and the global response of the modified 
cell can be observed at the molecular level). Such comprehensive and accurate experimental data are 
critical for developing and testing models of biological processes. 



 
The current challenge is to integrate the different information yielded from a variety of 
high-throughput methodologies to understand dynamical properties of cellular systems. 
 
1.2.1 Transcriptomic Data: studies the active genes in a given cell at a given time 

A. Gene Expression (GE) Profile 
Analysis of gene expression (GE) can be done by several different methods including (reverse 
transcriptome PCR) RT-PCR, RNase protection assays, microarrays, as well as northern blotting (see 
the knowledge base 1 and 2). Microarrays are commonly used, which yield consistent data with that 
obtained with northern blots, and can visualize thousands of genes at a time. 
 
High Throughput Measures of Gene Expression can be used to 
 Measure gene expression: quasi-estimate of the protein level and cell state 
 High throughput: measure mRNA level of all active genes in the genome 
 Checking the physiological status in many different situations 

 
Typical Steps for the Use of Microarrays 
 Grow cells at certain condition, collect mRNA population, and label them; 
 Microarray has high density sequence specific probes with known location for each gene/RNA; 
 Sample hybridized to microarray probes by DNA base pairing (A-T, G-C), wash non-specific 

binding;  
 Measure sample mRNA value by checking labeled signals at each probe location. 
 
 



There are two different types of microarrays:  i. Spotted cDNA microarrays 
ii. Oligonucleotide arrays 

 
Spotted cDNA Arrays 
 Developed by Pat Brown Lab, Stanford University;  
 Robotic spotting of cDNA (mRNA converted back to 

DNA without introns) ; typically containing several 
thousands of probes per array; 

 One long probe per gene 
 Competing hybridization: Control 

Treatment 
 Detection: Green: high control 

Red: high treatment 
Yellow: equally high 
Black: equally low 

 
 
 
 
 
 
 
 
 
 
Why Competing Hybridization?  DNA concentration in 
probes is not the same because probes may not be spotted 

evenly.  

 
Oligonucleotide Arrays 
 GeneChip® provided by by Affymetrix;  
 Parallel synthesis of oligonucleotide probes (25-mer) on 

a slide using photolithographic methods; typically 
containing millions of probes per microarray; 

 Multiple probes per gene; 
 One-color arrays; 

   
 

   

  
 

   
      

   
  



Typical Steps for the Use of Oligonucleotide Arrays 
Labeled Samples Hybridize to DNA Probes on GeneChip 

 
Shining Laser Light Causes Tagged Fragments to Glow 

 
 
B. Next Generation Sequencing Technologies There are several next generation sequencing 

technologies under development in order to bring down the sequencing cost to $1000 USD. 
We only introduce the principles of the most representative ones to give a brief overview of 
the field. 

 
454 Life Sciences: Small fragments of DNA are mixed with small beads. The mixture is sufficiently 
dilute so that each bead bind a single DNA molecule. Next, the DNA‐containing beads are dispersed 
on a silicon plate containing 400,000 regularly spaced wells. Each well captures a single bead. PCR 
is performed directly on the bead‐tethered DNA to amplify each molecule. This is then used as a 
substrate for a second round of PCR that includes bioluminescent proteins as well as DNA 
polymerase. 

The second round of DNA synthesis is performed separately with dATP, dGTP, dTTP, or dCTP, 
with a washing cycle between each pulse. The addition of one of the four deoxynucleotide 
triphosphates (dNTPs) (in the case of dATP we add dATPαS which is not a substrate for a luciferase) 
initiates the second step. DNA polymerase incorporates the correct, complementary dNTPs onto the 
template. This incorporation releases pyrophosphate (PPi) stoichiometrically. ATP sulfurylase 
quantitatively converts PPi to ATP in the presence of adenosine 5’ phosphosulfate. This ATP acts as 
fuel to the luciferase-mediated conversion of luciferin to oxyluciferin that generates visible light in 



amounts that are proportional to the amount of ATP. The light pulse represent the incorporation of a 
particular nucleotide. Unincorporated nucleotides and ATP are degraded by the apyrase, and the 
reaction can restart with another nucleotide. Thus in this way 400,000 DNAs are simultaneously 
sequenced (200‐400 nucleotides per segment) to generate 100 Mb sequence per run. 

 

 
Figure Caption: (a) Clonally amplified 28-μm beads generated by emulsion PCR serve as sequencing features and are 

randomly deposited to a microfabricated array of picoliter-scale wells.  

(b) With pyrosequencing, each cycle consists of the introduction of a single nucleotide species, followed by addition of 

substrate (luciferin, adenosine 5’-phosphosulphate dATPαS) to drive light production at wells where polymerase-driven 

incorporation of that nucleotide took place. This is followed by an apyrase wash to remove unincorporated nucleotide. 

 
HeliScope platform: Single nucleic acid molecules are sequenced directly, that is, there is no clonal 
amplification step required. Poly-A–tailed template molecules are captured by hybridization to 
surface-tethered poly-T oligomers to yield a disordered array of primed single-molecule sequencing 
templates. Templates are labeled with Cy3, such that imaging can identify the subset of array 
coordinates where a sequencing read is expected. 

Each cycle consists of the polymerase-driven incorporation of a single species of fluorescently 
labeled nucleotide at a subset of templates, followed by fluorescence imaging of the full array and 
chemical cleavage of the label. 

 
 
SOLiD Platform (Sequencing by Oligonucleotide Ligation and Detection, 
http://en.wikipedia.org/wiki/2_Base_Encoding): Clonally amplified 1-μm beads are used to generate 
a disordered, dense array of sequencing features. Sequencing is performed with a ligase, rather than a 
polymerase. Each sequencing cycle introduces a partially degenerate population of fluorescently 
labeled octamers (8 bases in length). The population is structured such that the label correlates with 

http://en.wikipedia.org/wiki/2_Base_Encoding


the identity of the central 2 bp in the octamer (the correlation with 2 bp, rather than 1 bp, is the basis 
of two-base encoding). These 8-base long probes have a free hydroxyl group at the 3’ end, a 
fluorescent dye at the 5’ end and a cleavage site between the fifth and sixth nucleotide. The first three 
bases nnn (starting at the 3' end) are complementary to the nucleotides being sequenced. Bases 4 
through 5 are degenerate (XX) and able to pair with any nucleotides on the template sequence. Bases 
6-8 (zzz) are also degenerate but are cleaved off, along with the fluorescent dye, as the reaction 
continues. In this manner positions n+1 and n+2 are correctly base-paired followed by n+6 and n+7 
being correctly paired, etc. The composition of bases n+3,n+4 and n+5 remains undetermined until 
further rounds of the sequencing reaction. 

After ligation and imaging in four channels, the labeled portion of the octamer is cleaved via a 
modified linkage between bases 5 and 6, leaving a free 5’ end for another cycle of ligation. Several 
such cycles will iteratively interrogate an evenly spaced, discontiguous set of bases. The system is 
then reset (by denaturation of the extended primer), and the process is repeated with a different offset 
(e.g., a primer set back from the original position by one or several bases) such that a different set of 
discontiguous bases is interrogated on the next round of serial ligations. The sequencing step is 
basically composed of five rounds and each round consists of about 5-7 cycles. A complete reaction 
of five rounds allows the sequencing of about 25 base pairs of the template. 

 
 
RNAseq: a revolutionary tool for transcriptomics 

The recent development of next‐generation massively parallel sequencing (MPS) technologies 
by companies such as Roche (454 GS FLX), Illumina (Genome Analyzer II), and ABI (AB SOLiD) 
has completely transformed the way in which quantitative transcriptomics can be done. These new 
technologies have reduced both the cost per reaction and time required by orders of magnitude, 
making the use of sequencing a cost‐effective option for many experimental approaches. One such 
method that has recently been developed uses MPS technology to directly survey the RNA content of 
cells, without requiring any of the traditional cloning. This approach, called “RNA‐seq”, can 
generate quantitative expression scores that are comparable to microarrays, with the added benefit 
that the entire transcriptome is surveyed without the requirement of a priori knowledge of transcribed 
regions. The important advantage of this technique is that not only can quantitative expression 
measures be made, but transcript structures including alternatively spliced transcript isoforms, can 
also be identified. 
 
RNA-Seq: Alternative to Microarrays with Unique Features 
 Yielding general expression profiling 



 Applicable for novel genes 
 Providing information about alternative splicing 
 Can detect gene fusion 
 Can be used on any sequenced genome 
 Better dynamic range 
 Cleaner and more informative data 
 But data analysis is challenging 

 
Working Principle 

 

 
(a) 

 
(b) 

Figure Caption: (a) Long RNAs are first converted into a library of cDNA fragments through either RNA fragmentation 



or DNA fragmentation. Fragmentation of oligo-dT primed cDNA (blue line) is more biased towards the 3’ end of the 

transcript. RNA fragmentation (red line) provides more even coverage along the gene body, but is relatively depleted for 

both the 5’ and 3’ ends. 

(b) Sequencing adaptors (blue) are subsequently added to each cDNA fragment and a short sequence is obtained from 

each cDNA using high-throughput sequencing technology. The resulting sequence reads are aligned with the reference 

genome or transcriptome, and classified as three types: exonic reads, junction reads and poly(A) end-reads. These three 

types are used to generate a base-resolution expression profile for each gene, as illustrated at the bottom (a yeast ORF 

with one intron is shown). 

 
1.2.2 Proteomic Studies: discover which proteins are present and in what amounts 
Challenges in Proteomics 
 Too many proteins:  

 20 building blocks instead of 4; 
 65% genes have splice and translation isoforms; 
 Many different post-translation modifications (PTM); 
 # Proteins > # mRNA > # genes 

 Difficult to capture and study activities 
 Protein state changes are often faster than transcription regulation; 
 Need to be in functionally folded state, with right PTM;  
 Many are difficult to purify and study in vitro, e.g. membrane proteins 

 Big dynamic range 
 Yeast 106, human 109, current method 102-104 
 No PCR for amplifying proteins, hard to profile low-abundance proteins 

 Why bother then? 
 A lot of practical applications 
 Most drugs act on proteins not DNA/RNA 
 Enzyme / TFs are the master regulators 
 DNA ~ “the novel”, mRNA ~ “the script”, proteins ~ “the actors” 



 

 
High-throughput methods for measuring protein-protein interactions 

High-throughput methods for detecting PPIs at large-scale that have been introduced include 
yeast two-hybrid (Y2H) screening, affinity purification–mass spectrometry (AP–MS), and protein 
microarrays. 

 
Mass Spectrometry: Identify proteins by comparing observed MS spectrum to computed spectrums 
from genome 

 
Mass spectroscopies do not resolve too long proteins; so we need to cut protein to shorter peptides 
(~15 aa) by using trypsin, which cleaves at Arginine (R) and Lysine (K) but not before Proline (P). 
 
Apparatus and Working Principle 



 
Tandem high performance liquid chromatography‐mass spectrometry (HPLC‐MS) is an 

analytical chemistry technique that combines the physical separation capabilities of HPLC with the 
mass analysis capabilities of mass spectrometry. HPLC‐MS is a powerful technique used for many 
applications which has very high sensitivity and specificity. Generally its application is oriented 
towards the specific detection and potential identification of chemicals in the presence of other 
chemicals (in a complex mixture). HPLC separates complex protein mixtures into less complex sub‐
fractions based on ionic interactions with a charged column (ion exchange chromatography) and 
hydrophobic interactions with the column (reverse phase chromatography). An electrospray is used 
that employs high voltage to disperse a liquid through a fine glass or metal capillary resulting in a 
highly charged aerosol. Mass spectrometry (MS) is an analytical technique for the determination of 
the elemental composition of a sample molecule. It is also used for elucidating the chemical 
structures of molecules, such as peptides and other chemical compounds. The MS principle consists 
of ionizing chemical compounds to generate charged molecules or molecule fragments and 
measurement of their mass‐to‐charge ratios. 

In a typical MS procedure: 
1) A sample is loaded onto the MS instrument, and undergoes vaporization. 
2) The components of the sample are ionized to form charged particles. 
3) The positive ions are then accelerated by an electric field. 
4) Computation of the mass‐to‐charge ratio (m/z) of the particles based on the details of motion of 
the ions as they transit through electromagnetic fields. 
5) Detection of the ions, which in step 4 were sorted according to m/z. 
 
Peptide Charge and Mass 

 
From the charge z=2 and 2m M H += + , the measured peak with 472.7700 ( 2 ) 2m z M H += = +  



and 1.0073H + = , the peptide mass is then estimated to be 943.5254M = . 
 
Two large-scale MS experiments 

 
Reproducibility in AP/MS 

 
 
Yeast Two-Hybrid (Y2H) 

Two‐hybrid screening (also known as yeast two‐hybrid system or Y2H) is a molecular biology 
technique used to discover protein‐protein interactions. The premise behind the test is the activation 
of downstream reporter gene(s) by the binding of a transcription factor onto an upstream activating 
sequence (UAS). 

 
For two‐hybrid screening, the transcription factor is split into two separate fragments, called the 

binding domain (BD) and activating domain (AD). The BD is the domain responsible for binding to 
the UAS and the AD is the domain responsible for the activation of transcription. The most common 



screening approach is the yeast two‐hybrid assay. This system often utilizes a genetically engineered 
strain of yeast in which the biosynthesis of certain nutrients is lacking. When grown on media that 
lack these nutrients, the yeast fail to survive. This mutant yeast strain can be made to incorporate 
foreign DNA in the form of plasmids. In yeast two‐hybrid screening, separate bait and prey plasmids 
are simultaneously introduced into the mutant yeast strain. Plasmids are engineered to produce a 
protein product in which the DNA‐binding domain (BD) fragment is fused onto a protein while 
another plasmid is engineered to produce a protein product in which the activation domain (AD) 
fragment is fused onto another protein. The protein fused to the BD may be referred to as the bait 
protein, and is typically a known protein the investigator is using to identify new binding partners. 
The protein fused to the AD may be referred to as the prey protein and can be either a single known 
protein or a library of known or unknown proteins. 

A library may consist of a collection of protein‐encoding sequences that represent all the 
proteins expressed in a particular organism or tissue. If the bait and prey proteins interact, then the 
AD and BD of the transcription factor are indirectly connected, bringing the AD in proximity to the 
transcription start site and transcription of reporter gene(s) can occur. If the two proteins do not 
interact, there is no transcription of the reporter gene. In this way, a successful interaction between 
the fused proteins is linked to a change in the cell phenotype. 

   

Two large-scale Y2H studies: Uetz et al. and Ito et al. 

   
 
Reproducibility in Y2H 



 
 
Antibody Microarrays 

An antibody microarray is a specific form of protein microarrays, a collection of capture 
antibodies are spotted and fixed on a solid surface, such as glass, plastic and silicon chip for the 
purpose of detecting antigens. Antibody microarray is often used for detecting protein expressions 
from cell lysates in general research and special biomarkers from serum or urine for diagnostic 
applications. The covalent labeling of all proteins in a complex mixture provides a means for 
detecting bound proteins after incubation on an antibody microarray. If proteins are labeled with a 
tag, such as biotin, the signal from bound proteins can be amplified. 

 
1.2.3 Metabolome: examine which metabolic processes occur under different conditions 

Biological systems, which exploit suitable energy sources, can achieve spontaneous 
self-organization (order) and allow them to reach high levels of diversity and complexity by means 
of adaptive processes. From the thermodynamic point of view, the actual decrease of entropy of the 
system, relative to its organization, is balanced by the entropy increase of the surrounding 
environment. 

Metabolism is a set of biochemical reactions by which the cells can extract energy and materials 
from its environment, and uses them to produce different metabolites necessary for its survival and 
function. Metabolomics is the scientific study of chemical processes involving metabolites. The 
metabolome represents the collection of all metabolites in a biological cell, tissue, organ or organism, 
which are the end products of cellular processes. Thus, metabolic profiling can give an instantaneous 
snapshot of the physiology of that cell. 



 
Comparison of High Throughput Analytical Platforms 

 

 
 
1.3 Biological Networks 

Human genes and the proteins they encode in a biological system do not work in isolation but 
are connected at various levels, giving rise to a plethora of networks. Depending on the kind of 
biological network, the edges and nodes of the graph have different meaning. 
1.3.1 Transcriptional Regulatory Networks (protein-DNA interactions) 

The regulation of gene expression ensures the correct expression of specific gene at the right 
time and at the right location. The regulation of gene expression gives a cell control over its structure 
and function. In eukaryotes, the transcription of each gene is regulated by transcription factors (TFs). 
Transcriptional regulation is the process by which genes regulate the transcription of other genes. A 
gene X directly regulates a gene Y, if the protein that is encoded by X is a transcriptional factor for 
gene Y. 

In a transcriptional regulation network (TRN), nodes represent genes and directed edges 
between them represent interactions through which the products of one gene affect those of another. 
Thus, the network structure is an abstraction of the system’s biochemical dynamics that is 
responsible for regulating the expression of genes in the cell. 

 
The mapping between environmental signals {Si}, transcription factors {Xi} inside the cell, and the genes that they 

regulate. The transcription factors, when active, bind DNA to change the transcription rate of specific target genes. 

 
The genome of the unicellular yeast encodes 200 predicted TFs, which is 3% of all 

protein-coding genes; the relatively simple metazoan nematode C. elegans contains 934 predicted 
TFs (5% of all protein-coding genes); humans may devote up to 10% of their coding potential to 



regulatory TFs. TRN identification today is mainly accomplished with the combination of microarray 
techniques with chromatin immune precipitation (ChIP, see the knowledge base file). 
 
1.3.2 Protein-Protein Interaction (PPI) Networks 

A vast number of biological processes in an organism are dependent on 
precise physical interactions among many individual proteins. PPI networks 
reflect this interconnected nature of biological processes. In PPI networks, 
nodes represent proteins and undirected edges between them represent physical 
interactions. 

 
A PPI network showing the Epstein-Barr Virus (EBV) pathogenesis 

 
1.3.3 Metabolic Networks (MN) 

A metabolic network is an abstraction to represent cellular metabolism. Feist et al. proposed a 
general four-step process for a metabolic network reconstruction. The first step consists of generating 
a network draft from the genome annotation of the organism of interest. The draft network should be 
manually curated in the second step to remove incorrectly included reactions, add missing reactions 
for filling gaps, or assign enzymes localization to different cellular compartments. In the third step, 
the curated network should be translated into a mathematical model that facilitates the analysis of the 
network and its validation. The final step of metabolic network reconstruction process is to deploy 
the metabolic network model to produce new insights about the organism’s metabolism. 

For graph-theoretic analysis, metabolic networks are usually represented by a bipartite graph 
with two sets of nodes: one corresponding to metabolites and the other corresponding to reactions (or 



enzymes). Edges connect reactions (or enzymes) with their participating metabolites. 
 

Reaction 1: 1

2

E
EA B C+ →  

Reaction 2: 3EC D→  
Reaction 3: 4ED F G H+ → +  

 
1.3.4 Signaling Networks (SN) 

Signaling networks are used by cells to constantly monitor a wide array of external and internal 
stimuli. External stimuli can include nutrient levels, growth factors, hormones, and so on; whereas 
DNA damage, protein misfolding, and so on, can be considered as internal stimuli.108 Both stimuli 
are sensed by receptors and the information is transmitted through a series of biochemical reactions. 
Ultimately, appropriate decisions are taken. 

In a signaling network, nodes represent proteins and protein complexes. However, nucleotides, 
lipids, and chemical compounds involved in the information flow process can also be included. A 
signaling network may contain a wide variety of relationships with different edges to represent 
phosphorylation/dephosphorylation, activation/inhibition, binding, association, ubiquitination, and so 
on. Some of these relationships are directional, such as phosphorylation, activation, or ubiquitination, 
where a protein acts on another protein to pass the information. However, in relations such as binding, 
and association, protein complexes are formed and no directionality of information flow can be 
ascertained. 

 
 
1.4 Mathematical Modeling for Understanding Complex Biological Processes 

It is important to note that biological networks usually include all known interactions in a 
cellular system. However, only a subset of these interactions may be active in a particular cellular 
and environmental context at a particular time. To discover the activated regions of the networks and 
their biological implications, networks have to be integrated with experimental data that represent the 
physiological state of the system in that particular condition. Then an iterative process is met with 
genome-scale data constraining and driving the development of models. The hypotheses used for the 
model can be tested experimentally to allow further refinement of the models. 

Different mathematical frameworks have been developed for modeling the behavior of different 
types of biological systems. Two examples are described below: 

 
Modeling Metabolic Processes 

A metabolic network can be represented as a stoichiometric model, which is a mathematical 
representation of the mass conservation law (or mass balance) applied to the metabolites of the 
network. The mass balance for all metabolites in a network can be expressed in matrix notation by 
mapping the information contained in the network into the stoichiometric matrix (S). The 
stoichiometric matrix is of dimensions n × m, where n is the number of metabolites and m is the 



number of reactions in the network. 
Using the stoichiometric matrix, the mass balance for the metabolites can be written as 

1

m

ij j
j

dc S v S v
dt =

= ⋅ = ∑ , 

where ( 1)c n× is the vector of metabolite concentrations and ( 1)v m× is the vector of reaction rates.. 
The model can be solved for steady state conditions: 0S v⋅ = , which is often underdetermined 
because the number of reactions is typically greater than the number of metabolites in a metabolic 
network. This problem is addressed in constraint-based methods that analyze metabolic networks by 
characterizing the vector of reactions rates (also called flux distribution) that satisfy 0S v⋅ = . The 
method (called Flux Balance Analysis FBA) estimates flux distributions that optimize a biological 
objective while satisfying 0S v⋅ = and additional constraints regarding the reversibility and carrying 
capacity of the reactions. Commonly used objectives that have proven to produce meaningful flux 
distributions include the maximization (or minimization) of the biomass production rate, ATP 
production, or the synthesis of a particular metabolite. 
 
Modeling Gene regulatory Networks 

Signaling pathways serve as the cell’s central control machinery, which tightly regulates the 
cell’s response to external and internal stimuli. Many signaling pathways are triggered by the binding 
of extracellular biomolecules (e.g., hormones or growth factors such as TGF, IGF) to a docking 
molecule (i.e., receptor, such as EGFR, IGFR) embedded in the membrane surrounding the cell. If a 
signaling molecule binds to the extracellular region of the receptor, the receptor’s three-dimensional 
structure may change that can trigger cascades of biochemical reactions within the cytoplasm. These 
cascades often involve specialized signaling molecules such as enzymes known as kinases (such as 
Raf, PI3K, Akt, MEK, ERK), which transfer phosphate groups from one molecule (the donor) to a 
specific target molecule (the substrate). The addition of the phosphate group changes the substrate 
protein’s biochemical behavior so that it, in turn, can modify additional signaling molecules in the 
signaling cascade. Ultimately, this chain reaction results in the activation of proteins called 
transcription factors that bind in the cell nucleus to DNA, triggering expression of distinct sets of 
target genes. 



 
Genetic and biochemical experiments in the 1960s demonstrated the presence of regulatory 

sequences in the proximity of genes and the existence of proteins that are able to bind to those 
elements and to control the activity of genes by either activation or repression of transcription. These 
regulatory proteins are themselves encoded by genes (see the following Figure for the representation 
of a fictional Gene Regulatory Network (GRN)). This forms a complex regulatory network with 
positive and negative feedback loops. 

 
Representation of a simple, fictional transcription factor network. All genes shown encode transcription  

factors that control the activity of genes encoding transcription factors. 

 
The dynamics of the resulting GRNs can be described with systems of differential equations 
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These equations are typically highly nonlinear. Linear differential equations can be solved 
analytically; nonlinear ones cannot and a different perspective on nonlinear system dynamics is 
needed. 



 Let us consider a qualitative linear dynamics 

, 

which can be properly described by 

1 2
dx k k x
dt

= − . 

The equation has a solution 1 1
2

2 2

( ) ( (0) )exp( )k kx t x k t
k k

= + − − . For a given pair of parameter values (k1 

and k2)), there is a unique stable steady state in the state space, which is globally attracting. Any other 
pair of parameter values has the same qualitative features and the dynamics only differs in a 
quantitative way. 

. 

Now let us introduce a nonlinearity into the system 1 2(1 )dx k x x k x
dt

= − − . The parameter space breaks 

up into two regions: in the region k1≤k2 each pair of parameter values gives a unique, stable steady 
state at x = 0, which is globally attracting; in the region k1 > k2 each pair of parameter values has two 
steady states, one unstable at x = 0 and one stable at x = 1 – k2/k1 to which all positive initial 
conditions are attracted. A bifurcation takes places at k1 = k2 

 

For a general system of nonlinear differential equations, parameter space can break up into 
multiple regions. Dynamical features shift abruptly through bifurcations as the boundary between 
two parameter regions is crossed. In each of these regions the state-space dynamics has the same 
qualitative features (the # of steady states and their stabilities); different regions have different 
qualitative dynamics. 

To investigate the dynamics in the state space, the first thing to calculate is the steady states – 
they are the skeleton around which the dynamics takes place. As an example, let us consider a gene 
transcription system with a positive feedback on itself. The schematic is shown as follows: 



 
The system dynamics can be described by  

. 

Here we introduce the method of nullclines for the 2D systems. The x1 nullcline is the locus of 

points satisfying 1
2 10dx ax x

dt λ
= → = . Similarly, the x2 nullcline is the locus of points satisfying 

2 1
2

1

0dx xx
dt b k x

α
= → =

+
. The steady states are the intersections of the nullclines. 

 
The dynamics of the system can then be revealed with the trajectories in the state space. The 
following figure presents the trajectories starting from different points (the black spots) in the 
state space. The parameters used are 1 1 1 10.08sec ; 0.02sec ; 0.1sec ; 0.1 seca b Mλ a µ− − − −= = = =  
and 5k Mµ= for the left figure and 2k Mµ= for the right figure. The system is found to 
dynamically approach to the nearby stable state (the pink color spot) no matter what it locates 
initially in the state space. The trajectories are attracted to and then hug the x2 nullcline because 
α and b are 10-fold larger than λ and a. This time scale separation (i.e., x2 is a fast variable and 
x1 the slow variable) allows us to eliminate x2 after the initial transient and reduces the system  
to a 1-dimensional dynamics (the Tykhonoff's Theorem). 



 
The 1-D dynamical system becomes ( )dx dt f x= . The procedure to discover the 1D stability is: 

 

1) find a steady state x = xst , so that ( ) 0
st

st
x x

dx f x
dt =

= = ; 

2) calculate the derivative of f at the steady state ( )

stx x

df x
dt =

; 

3) if the derivative is negative, then xst is stable; 
4) if the derivative is positive, then xst is unstable; 
5) if the derivative is zero, then nothing can be said. 
But notice that derivatives give only local information, we cannot tell the size of the region from 
the deriviative. The stability region may be vanishingly small. 
 
For n-dimensional systems with ( )dx dt f x= , the procedure can be modified as follows: 

1) find a steady state x = xst , so that ( ) 0
st

st
x x

dx f x
dt =

= = ; 

2) calculate the Jocobian matrix of f at the steady state ( )
stx x

A Df
=

= ; 

3) if all the eigenvalues of A have negative real part, then xst is stable; 
4) if none of the eigenvalues of A have zero real part and at least one of them has a positive 

real part, then xst is unstable; 



5) if one of the eigenvalues of A has zero real part, then nothing can be said. 
 
There exists a homeomorphic mapping between the nonlinear state space and the linear state 
space that preserves the dynamical trajectories (qualitative similarity). So it is useful to linearize 
the nonlinear dynamic system, find the steady states of the corresponding linear system, and 
then study the dynamics nearby the steady states 

. 
 
A Case Study of Auto-Regulation (AR) of a Single Gene 

 

1

2

deg ( )

deg

dx dm translation radation r p am
dt dt
dx dp transcription radation bm cp
dt dt

= = − = −

= = − = −
 with , 0a c > . 

To find the nullcline for mRNA, set the equation dm dt  to 0: ( )m r p a= . Do the same for 
the equation for dp dt : m cp b= . 

A vector field can be plotted in Mathematica using the StreamPlot command; and overlay 
plots using the Show command. Make a plot of the nullclines for m and p, overlaid with a vector 
field plot. Use a = 0.6, b = 0.1, c = 0.1. 

 
The red curve is the protein nullcline; the green curve is the mRNA nullcline. The three 
intersections between the two nullclines represent the fixed points. The first fixed point (small p, 
small m) is a stable steady state because it attracts neighboring trajectories; the last fixed point 



(large p, large m) is also a stable steady state. The intermediate steady state is unstable because 
trajectories tend to deflect away from it towards one of the two other steady states. The 
trajectories rapidly converged to the green curve (mRNA nullcline) and then traveled along the 
green curve to reach one of the two stable steady states (intersection with the red curve). This 
means that for these parameters, the mRNA rapidly reached steady state and stopped changing, 
followed by a slower change in the protein concentration. 
 Make a plot of the nullclines and the vector field again but using a = 0.6, b = 10, c = 10. 

 
In this plot, we see the reverse phenomenon: the trajectories rapidly converge to the red curve 
(protein nullcline) and then travel more slowly to the steady states. This indicates that protein 
equilibrates more rapidly than mRNA for these parameters. 
 Assume that transcription and mRNA degradation are fast processes relative to protein 
translation and degradation. With this assumption, we can make a timescale separation and 
reduce the two-variable system to a one-variable system. We set the equation for 0dm dt =  
and solve for m: ( )m r p a= . Substitute your expression into dp dt bm cp= − , 

( ) ( )dp dt bm cp br p a cp r p cpa= − = − = − . Here α represents a scaling factor that determines 
how the protein production rate is proportional to the transcription rate, r(p). A useful way to depict a 
one-dimensional system is to separate it into two parts: synthesis and degradation. Suppose that we 
have an equation of the form ( ) ( )dx dt S x D x= − , where S is a synthesis term and D is a 
degradation term. The criterion for a fixed point 0dx dt =  then becomes S(x) = D(x). If we draw 
S(x) and D(x) on the same plot, the fixed points are just the points at which S(x) and D(x) intersect. 
This allows us to easily see where the fixed points are, and how they are influenced by changes in the 
shape of the synthesis and degradation curves, giving us a powerful way in which to determine the 
qualitative properties of the system over a range of parameters. 
 
A Case Study of a Bistable Network Motif 

Complex dynamics of molecular signaling networks arise collectively from interactions among 
individual components. Cellular functions, such as proliferation, differentiation, homeostasis, 
mobility, metabolism and rhythmic behaviors, require proper integration of the dynamical properties 
of networks. Here we will use bistability as an example to illustrate the principle that can be invoked 
to produce the desired dynamics with a properly structured network motif. 



Many cellular responses, including proliferation, differentiation, lineage specification and 
apoptosis, are all-or-none, in which cells choose between two discrete outcomes. Once cells commit 
to one fate over the other, the state transition is usually irreversible under physiological conditions. 
To deepen our insight into the behavior, let us consider a simple two-variable system in which genes 
X and Y activate each other transcriptionally, with linear degradation of each gene product. Y 
activates X in a simple Michaelis–Menten fashion, whereas X activates Y with the Hill function: 

 

2 1

4 3

M
n

n n
H

dX Yk k X
dt K Y
dY Xk k Y
dt K X

= −
+

= −
+

. 

The possible steady states of this system appear as intersection points of the X and Y nullclines 

(i.e., the curves deduced from dX/dt=0 and dY/dt=0): 2

1 M

k YX
k K Y

= ⋅
+

, and 4

3

n

n n
H

k XY
k K X

= ⋅
+

. For 

the system to be bistable, the two nullclines must intersect each other three times, corresponding to 
two stable steady states and one unstable steady state in between. Given that the X nullcline bends 
upward or is at best a straight line, the Y nullcline has to be sufficiently ‘twisted’ in a certain way in 
order to cross the X nullcline back and forth multiple times. This behavior can be readily achieved 
when the Y nullcline is sigmoid. In fact, a certain degree of ultrasensitivity (n>1) in either of the two 
arms of a positive feedback loop is essential for bistability to arise. 

   

 


